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Abstract

This study presents a newly developed approach for visualization of Pareto and quasi-Pareto solutions of a multiob­
jective design problem for the heat piping system in an artificial satellite. Given conflicting objective functions, mul­
tiobjective optimization requires both a search algorithm to find optimal solutions and a decision-making process for
finalizing a design solution. This type of multiobjective optimization problem may easily induce equally optimized
multple solutions such as Pareto solutions, quasi-Pareto solutions, and feasible solutions. Here, a multidimensional
visualization and clustering technique is used for visualization of Pareto solutions. The proposed approach can support
engineering decisions in the design of the heat piping system in artificial satellites. Design considerations for heat pip­
ing system need to simultaneously satisfy dual conditions such as thermal robustness and overall limitation of the total
weight of the system. The proposed visualization and clustering technique can be a valuable design tool for the heat
piping system, in which reliable decision-making has been frequently hindered by the conflicting nature of objective
functions in conventional approaches.
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1. Introduction

When considering the enormous launch expenses
and maintenance costs, designers must satisfy strict

design criteria, such as performance, reliability,
weight, flexibility, and the structural integrity, for
most of the components of an artificial satellite. Thus,
satisfying the above criteria naturally poses a multiob­
jective optimization problem that has innumerable
alternative solutions, also known as Pareto solutions.
With no unique and/or superior design solution, de­
signers have had difficulty in making unanimously
acceptable decisions on" a single design out of the
numerous Pareto solutions. Two different approaches
are commonly used to overcome the difficulties in the
decision-making (DM) process for a muJtiobjective
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optimization problem. First, the preference method
literally assigns fixed weights on preferences with
respect to each design objective before initiating the
optimization to find a unique design solution for DM.
Second is the trade-off method, which is used to make
a decision from the Pareto solutions after optimization.
However, attempts for DM using the preference or
trade-off method easily yield poor design outcomes,
mainly because a single solution can be inadequate or
even unrealistic if the designer needs to satisfy other
criteria, such as durability and/or manufacturability,
in the overall design [1,2]. Therefore, designers
should be provided with a set of Pareto solutions
along with supporting knowledge of the solutions so
that they can judiciously use the information to
choose a better design alternative. Multidimensional

visualization has been one of the most supportive
tools in guiding feasibility and correlation among
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ing the total weight of the thermal control subsystem
is also important to minimize the payload on the
booster-rocket. A satellite panel is embedded with
many aluminum heat pipes, which generally occupy
over 50% of the total mass of the radiator panels.
Thus, the design of a thermal system in an artificial
satellite requires both high fill-efficiency and mininal
weight of the heat pipes. Additionally, the operating
temperature ofthe heat widely ranges from -20.GoC
to 60.0°C in orbit. The thermal performance of the
heat pipes must remain stable and predictable even
under an abrupt variation of the outside temperature.
Therefore,the temperature dependency of the pipes
must be also considered in the heat pipe design. In
this study, at first, a combination ofResponse Surface
Methodology (RSM) and Monte Carlo simulation
was applied to formulate the mass and thermal func­
tions of the pipe structure [9,10]. Here, design vari­
ables were the parameters that defined the shapes of
the heat pipes in the satellite panel, while the total
weight and thermal robustness of heat pipes became
the objective functions.

design parameters, objective functions, and practical
considerations in the conceptual design stage [3,4],
However, Pareto solutions inherently belong to the
outcomes of a multidimensional problem, hindering
solid DM for a unique design.

This paper proposes a synchronous 3-dimensional
visualization technique that illustratively interprets
Pareto solutions of a multiobjective optimization
problem. The advantages of this technique will be
demonstrated through an example of a practical ap­
plication of a heat pipe system design in an artificial
satellite [5]. Two different objective functions and
five independent design parameters were considered
in determining the dimension of the physical shape of
the heat pipe and maximizing its performance. The
multidimensional parameters and function spaces are
divided into several lower-order dimensional spaces
such as two or three dimensional plots. Each set of
data corresponding to a line segment in the lower
dimensional plots not only provides feasible solution
sets for designers but also helps them to visualize the
physical shape of the real design. Therefore, the de­
signer can conceptually understand the correlation of
design parameters among the optimized solutions.
Furthermore, this study introduces a clustering ap­
proach, which considers a set of Pareto solutions as a
group of several distinctive clusters. The approach
consists of clustering the solutions according to their
functional characteristics and design parameters. The
Euclidean distance and a point symmetry distance
have been used to measure the similarity and dissimi­
larity of the solutions. With the proposed approach,
we can search for the information that supports engi­
neering decision for the design of artificial satellite
heat pipe.

Fig. 1. Layout of heat pipes for satellite radiator [5].

2. Multiobjective optimization of artificial
satellite heat pipe

In general, a cooling system in artificial satellites
consists of heat pipes that are embedded on isother­
mal radiator panels. The fin efficiency, representing
the performance of the cooling system, can be dra­
matically improved by employing the matrix layout
of orthogonally interconnected heat pipes, as shown
in Fig. I. To maximize the fin efficiency of isother­
mal panels, minimizing the temperature gradient be­
tween the lateral and header heat pipes becomes a
crucial design objective [8]. On the other hand, reduc-
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2.1 Generation offitted estimation equations

where Teon is the condensed liquid temperature in

the lateral heat pipe and T,," is the vapor tempera­

ture in the header heat pipe. Also, Q is the assumed

quantity for the transported heat of 2.5W per thermal
joint. The determined response surface equation of

G is denoted as G:

the temperature dependency of the heat transfer coef­
ficientsof' the evaporator and condenser at the inner
wall of an individualheat pipe cannot be neglected if
the stability ofthe thermal system is to be considered.
Consequently, uncertain or uncontrollable design
variables such as to and T;,p were considered as
robust design parameters. Their ranges of variation
are described in Table 2. Three levels of experimental
design for five design parameters produced 27 analy­
sis points [9~1l,20]. Those points were used to select
the combination of the analysis parameters that could
minimize the total number of finite element analyses.

(I)
Q

G=--=-­
~on - I:Wl

Twenty-seven finite element analyses were per­
formed to calculate the thermal performance of the
heat pipes of parametric combinations, which were
obtained from the Taguchi orthogonal array-L27
[9,11). These performance results were used to con­
struct the equation for estimating the characteristic
values of the thermal conductance ( G ) and the total
mass (M ). Chebyshev's equation was considered to
correlate the regression coefficients in multiple linear
regression models. The calculated value G that indi­
cates the thermal conductance across the thermal
joints in heat pipes is defined as:
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Heat pipe designers must determine the following
design parameters: (i) length of fin t L, )> (ii) cutting

length of adhesive attached area (L, ), and (iii) thick­

ness of fin ( t, ) as illustrated in Fig. 2. The allowable

ranges of the design parameters are given in Table I.
Note, that (iv) adhesive thickness (tb ) and (v) opera-

tion temperature (T;,p) are parameters that cannot be

controlled by heat pipe designers but significantly
affect the thermal performance of the heat pipes. The
lateral and header heat pipes are bonded together at
the flange fin area with conductive epoxy. The adhe­
sive thickness, to has manufacturing tolerance, which

influences the thermal performance of the heat pipes.
To include this tolerance factor, the adhesive thick­
ness was randomly assigned to values between
OJ2mm and 0.22mm having statistics of normal dis­
tribution. For normal operation of the satellite, the
operating temperature (T;,p) for heat pipes had to be

in the'range of -20.0~C through 60.0"C. Besides,

Fig. 2. Design parameters in 3D FE analysis model of heat
pipes [5J.

Table I. Design parameter bounds.

Prameter Lower BOtU1d UpperBound

if IO.Omm 25.4mm

Lc 1.5mm 2.5mm

tf LOmm 1.7mm

Table 2. Uncertain design parameters.

Parmeter t;, ~'P

Lower Bound O.12mm -20.0'C

Upper Bound O.22mm 60.0"C

Probability Normal Distribution Normal Distribution
Distribution ~.=O.l7, a =0.016 It =20.0, a=!4.3

G= /(LoLjl,t."Top ) =0.3745378-0.935290Wb

+1.01612// +2.324128e,oL, -7.209993e-'L,2

+t.83837ge- JLi · - 5.379707e-' Lt' + 2.447391e-Zti

.....2.304583e-'t/ - 6.48341 Je-4T,p- 9.232971e-'T,,/

- 2.259702e-2/,£, - 4.735652e-\L, 2 + 0.1 J02442t/ (

-9.702533e-\'L,2 + 5.38221Ie "/,Lf - 9.540484e-'t.L/

+5.l5048e-\'Lr -1.232524e-4tb
2L/ + 0.2972589Ilr

-0.l052935t,// - 0.5422262t,\. - 0.1829687t/t/

(2)

Likewise, the response surface equation for the to­
tal mass, ij, is also expressed by the following
equation:
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if = f(Lt,Lc ' !/' t,,)=(1313.877 -75.5L< +11.0L/

+1.402597Lf -1.278314e- ' lL/ + 62.38776t/

-6.122449t/ - 380.8t& + 1120(;2) X 21

(3)

3. Multidimensional pareto solutions and
synchronous visualization

Pareto solutions of Eqs. (2) and (3) were
searched by using the Intermediate Tendency (IT)
optimizer [12,13]. The optimizer can be characterized
as a type of genetic algorithm, having typical genetic
operators such as fitness evaluation, selection, and
mutation. To improve the searching efficiency, the
optimizer adopts IT recombination, which is more
robust than other conventional intermediate recombi­
nations in searching speed. In conventional recombi­
nation, such as the global intermediate recombination,
any offspring individual cannot jump out from d »

dimensional search space covered by their parental
individuals. In other words, if an optimum point is
located out of the search space, no offspring can
reach the optimum point by recombination process
alone. The IT recombination, however, yields off­
springs depending on the level of discrepancy be­
tween parental individuals and randomly selected
ones. The degree of discrepancy is usually referred to
as a tendency in evolution processes, and the off­
springs are generated by adding the tendency to their
parents. Therefore, the individuals of subsequent it­
eration are not bound to their parental search space.
The superior performance of the IT recombination is

shown in Ref. [12,13]. For multiobjective optimiza­
tion, the optimizer randomly changes its preferences
between two objective functions and searching strat­
egy for Pareto solutions in function space. Fig. 3
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Fig. 3. Pareto solutions and quasi-Pareto solutions in function
space.

shows the Pareto solutions and also quasi-Pareto solu­
tions, which were gathered during the optimization
process. The quasi-Pareto solutions are the solutions
very close to the Pareto front. As shown in Fig. 3,
there are many quasi-Pareto and Pareto solutions. The
next section .will explain the method for finding
engineering information from these solutions.

3.1 Synchronous visualization offunctions and pa­
rameter spaces

Obtaining meaningful information for finalizing a
single solution is not an easy task, especially, if there
are many Pareto solutions in multidimensional space.
Although parallel-coordinate methods [14,15] can
handle multidimensional solutions, the approaches are
limited to a certain number of solution sets and their
dimensions. To overcome this difficulty, synchronous
3D visualization is proposed. Here, each of the multi­
dimensional parameter and function spaces is subdi­
vided into several Zl) or 3D subspaces, and visualized
simultaneously. Each solution is visualized in all the
subspaces, and the corresponding points in the sub­
spaces are connected by line segments. The real
world space is also visualized at the same time.
Through the interactive operation of the present visu­
alization system, engineers can explore and under­
stand the correlation among multidimensional func­
tion and parameter spaces and the real world space.

During the heat pipe optimization, a 5-dimensional
design parameter space was split to 2D and 3D sub­
spaces, i.e., the 2D space of the two uncontrollable
parameters and the 3D space of the three shape pa­
rameters. Here, the objective functions of 2D space,
i\;[ and G,were the same, while the two-parameter
subspaces and one-function space were visualized
simultaneously. Fig. 4 shows the concept of the pro­
posed visualization. The solutions in the original 7D
space were divided into the two-parameter spaces and
one-function subspace. Moreover, the corresponding
physical shape of the heat pipe was visualized along
with the subspaces: equivalent design points shown in
the different subspaces were connected by line seg­
ments. Therefore, it is easy to grasp the physical level
of correlation between subspace and solution. The
aformentioned visualization system was developed by
using the C language and graphic-programming li­
braries called ADVENTURE AutoGL (16]. A pro­
grammable graphical user interface is also provided.
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Fig. 4. Synchronous visualization of parameter subspaces,
function space and real world design.

2-0 F'unetian Spa,.Wi

Fig. 5. Synchronous visualization of Pareto solutions of heat
pipes.

The quasi-Pareto solutions obtained through itera­
tion are shown in Fig. 4. The figure exhibits a specific
position of the design parameters that consititue the
optimal values. For example, thin t, and low J:p
positively improve the optimum point. However, long
L, with small Le and t f will be in conflict with

one another. From this visualization, engineers can
easily receive ideas on the parametric sensitivity of
the current design shape of the heat pipe system. In
addition, the set of optimal points in visualization can
be considered as Pareto solutions. The effects of th

and J:p ' i.e., the mass and conductance, on the objec­

tive function space, are assessed in Fig. 5. In the fig­
ure, the line segments visualize the correlation be­
tween subspaces, As shown in the figure, the operat­
ing temperature is at its minimum level, and only the
variation of the adhesive thickness causes the changes

of the objective functions G and it.
Three different shape parameters, i.e., If' L,

and tf' are almost tied up at the same point in the

parameter subspace. Thus, if the shape parameters
If' Le and If cannot be changed, the apparent

design objectives, i.e., minimizing total mass and

maximizing heat conductance, can be only achieved
by using thinner adhesive (tb ) at a low temperature

( T,JP)' However, it is impractical to expect that the

operating temperature can be changed. Moreover,
controlling the thickness of the adhesive involves a
significant amount of uncertainty considering its
manufacturing allowance. For enhancing the per­
formance of a heat pipe, therefore, it is important to
exploit the correlation of shape parameters and objec-

tive functions such that the equations of G and if
are regenerated to incorporate the uncertainties of I"

and Top. In other words, while the equations only

include three shape parameters, random values were
assigned to tl> and Top according to the probability

distributions described in Table 2.

3.2 Estimation equations considering uncertain
parameters

The adhesive thickness (th ) is assigned random
values with normal distribution of 1-, = 170.0ft m

"and CT, = 16.7J1 m. Likewise, the operating tempera-
"tures (Top) have I-T = 20.0°C and CTT = 14.3°C. A

op op

direct sampling of I" and T"p by the Box-Muller
method for Monte Carlo simulation is performed to
simulate the random 2D parameters of adhesive

thickness I" and operating temperature T"p' The
number of samples for the Monte Carlo simulation
was 1,000,000. To assess thermal robustness, the

average value of thermal conductance.. OR' was de­
tined as follows:

(4)

(5)

where, fp(x) is the probability density function and

N is the total number of samples for the Monte
Carlo simulation (N = m x n = 1,000,000). The fitted

, .
polynomial equations of OR and K1R are regener-

ated by using a quadratic model, where the probabil­
ity density function of the uncontrollable parameters
tband J:p is embedded as

G
R

= 2.26136ge-'L, -8.299937e-3L,' +2.90544ge- 3L,

-7.364545e- 5L,' + 5.925684e-'t,- - L028177e-\ '

+0.2312513

(6)
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The clustering algorithm basically aims at minimiz­
ing the following clustering function:

Mn = (1283.375 +1.402597[] -1.278314e-"L/ (7)
-75.5L, +1I.OL} +62.38776t] -6.122449t/)X21

Here, X = {Xi,... ,X,,}<:;;; lFtJ is a set of n solu­

tions in d -dimensional space of real-value, where
the n is number of solutions to be clustered.

4. Clustering pareto solutions

Fig. 6 shows Pareto and quasi-Pareto solutions of
, A

OR and Mfl' Apparently, Pareto and quasi-Pareto

solutions have almost the same function values.
However, the quasi-Pareto solutions show larger vari­
ance in parameter space than the Pareto solutions.
From an engineering standpoint, quasi-Pareto solu­
tions having parametric variance seem better than
Pareto solutions because design freedom such as
manufacturability is increased. Therefore, both Pareto
and quasi-Pareto solutions should be evaluated more
in-depth, before making a final decision for the heat
pipe design. To do so, one of the clustering algo­
rithms is employed for evaluating the solutions. An
overview of the clustering algorithms can be found in
Ref. [13,17,18]. lfthe potential solutions are system­
atically classified into several clusters, engineers can
easily interpret the mathematical backgoumd as well
as engineering characteristics of the solutions in a
more intuitive manner.

(9)
d

dmink(Xi,vk) =[2..) -. -VIi I'f'
j=l

4.1 Point symmetry distance measure

Many clustering algorithms adopt a Minkowski
[17] metric to evaluate dissimilarity, i.e., the distance,
dis(xi , vk ) , in clustering functions. The Minkowsld

metric is defined as measuring the dissimilarity be­
tween the solution Xi = (x", .. ,xiJi and the center

of the cluster (search vector) vk = (vk l' '' ' ' Vkd)T :

v = {VW ; " Vd <:;: lFtd is a set of cluster centers, and

K is the number of clusters. Also, Xi means the

ith solution, vk indicates the center of the k-th clus­

ter, and U={uIW"'u", ... ,unK } is a set of clustering

memberships. Finally, It'k E {O,!} is the membership

of Xi that belongs to the k-th cluster and disCx" Vk)

presents the distance between X, and vk •

where r >: 1. Three types of commonly used Min­
kowski metrics are illustrated in Fig. 7. The Euclidean
distance (r = 2) is one of the most famous Min­
kowski distance metrics, Conventional clustering
algorithms with the Euclidean distance tend to detect
hyperspherical-shaped clusters.

The distribution shapes of Pareto and quasi-Pareto
solutions are much closer to the combination of hy­
perellipsoidal or hyperline shape than that of the hy­
perspherical shape. Thus, the Euclidean distance
measure may not be a good candidate for searching
the characteristics of the solutions. For this reason, the
point symmetry distance measure [19] is adopted.

(8)CP'(X, V,L') = t"i~)'ik' disCi;, Vk)
K""l .'=i

2-1) Functhm Space' 2-1) fUAl:t).Oft 'SPOl(;t!'

Fig. 6. Pareto (left) and quasi-Pareto (right) solutions of GR and 11lR •
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Fig. 7, Three common Minkowski metrics [I7J.

Euclidean Distance: [4" + 2' J lil ~ 4.472

Manhattan Distant": 4.;- 2 = 6

Sup Distance: max (4,21 = 4

(11)

dmink(x" vk ) , ' r= 2

d"",(x" iit )

«:«. v,) < e.
else,

4.2 Cluster interpretation ofpareto solutions

The proposed clustering method is applied to
Pareto and quasi-Pareto solutions from Eqs, (6) and

where 8 is the trade-off parameter between two
different distance measures. The results of the itera­
tive clustering method such as the K-means algorithm
[17,18] depend on the initial centers. In the proposed
clustering function, the clustering result significantly
changes as e varies. To circumvent this probles, the
flexible distance measure is adopted to the evolution­
ary clustering algorithm [12]. In minimizing the clus­
tering function, the trade-off parameter is defined as a
constant a priori. Only centers are considered as vari­
ables of the clustering function, and they are searched
by evolutionary processes such as selection, recombi­
nation, and mutation.

Fig. 9. Three clusters obtained by using the Euclidean dis­
tance (left) and point symmetry distance (right).

Fig. 9 shows an example that verifies the proposed

clustering algorithm. The patterns appearing in the
figure are generated by imitating Pareto solutions.
The result from Euclidean distance shows that three
clusters are separated from each other only geometri­
cally. However, the proposed flexible measure works
well for clusters 'With linear structures. The result
from the flexible distance measure demonstrates how
the parametric characteristics is transformed in pa­
rameter space. It is confirmed by comparing both
results in Fig. 9 that the proposed measure is better
suited for extracting meaningful engineering informa­
tion. Therefore, the proposed clustering is employed
along with the flexible distance measure in the fol­

lowing section.

lL~~: i \
I . ~.'.,

i • ~,,".nlj)fJ.~'M.. '. \
I, • ,~~"~\ \

\ \ .' \\ "". \

\ \ '

\1
\1--

II (Xi - Vk ) + (x p - i-\) II
01 (Xi - Vk ) II + II (Xp - Vt ) II)

(to)

dSY'Tf (Xi ~ Vk ) == Ininp-=l" ..,n

mKi p"0!>!

--+
XI

X1: ""-'!'-'T
. --+

Vi] -1' + _._ <;> VI

Fig. 8. Two clusters measured by using the Euclidean dis­
tance (left) and point symmetry distance (right).

~4~, ,

where the denominator term normalizes the point
symmetry distance. Due to normalization, the point
symmetry distance becomes insensitive to the Euclid­

ean distances II (Xi - Vk ) II and II (~p - VI) II·

Fig. 8 exhibits different clustering results of sample
patterns, which were obtained from two different
distance measures. The clustering result obtained
from Euclidean distance shows that the two clusters
are quantitatively well separated. The result obtained
from point symmetry distance shows that each clus­
tered pattern possesses the characteristics of its shape,
i.e., a circle in this case. However, groups of patterns

are often composed of patterns that have rare sym­
metric similarity among them. Therefore, Euclidean
distance and point symmetry distance measure are
flexibly used for the clustering function, Eq. (8). The
flexible distance measure is defined as follows:

The distance measure is more flexible for finding
clusters of hyperellipsoidal or hyperline shapes.
Given n solutions, the point symmetry distance

between the solution Xi and the cluster center vk is

defined as:
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Fig. 10. Design parameters corresponding to optimum design.

Fig. It. Clustering in function space.

(7). The solutions were clearly classified into two
clusters that have distinct parametric characteristics.
Cluster #1 includes the solutions mainly dominated
by fin thickness and slightly dominated by cut length.
The solutions in the cluster are not sensitive to fin
length. The solutions in cluster #2 change as the fin
length and the cut length vary. In-this case, the thick­
ness ofthe fin is fixed at its maximum value, 1.7mm.

onto the objeetfunction space. It is apparent from the
figure that the solutions in cluster # I are positively
increasing both the thermal conductance and mass
within a reasonable level. On the other hand, the solu­
tions in cluster #2 are exponentially increasing the
mass. For example, 63.6% increase in mass improves
84.8% of thermal conductance in cluster #1. However,
in cluster #2, 46.9% increased mass enhances the
conductance by only 25.6%. Thus, the solutions in
cluster #1 can be better candidates for overall design
in terms of mass minimization and conductance
maximization. As shown in Fig. 11, Point I - the ideal
point for DM - has the minimum mass and the maxi­
mum conductance. Therefore, Solution A, the closest
solution from Point f can be one solution for DM.
However, if the heat pipe designer emphasizes the
maximization of thermal conductance more, given a
relatively small mass, Solution B on the border be­
tween two clusters can be the most promising candi­
dateforDM.

5. Conclusions

This research proposes a new methodology for ana­
lyzing Pareto and quasi-Pareto solutions in solving a
multiobjective optimization problem. A synchronous
3D visualization technique explores the underlying
characteristics of multidimensional solutions while
illustrating the correlations among parameters, objec­
tive functions, and actual design parameters. More­
over, in clustering the potential solutions to find a
meaningful decision for an engineering design, this
paper presented a clustering algorithm, which incor­
poates the hybrid distance measuring method for
evaluating Euclidean and point symmetry distance.
The clustering algorithm showed the similarity and
dissimilarity among the solutions and providedillus­
trative information for designers. As a practical ex­
ample, a design problem of a heat piping system in
an artificial satellite was studied by the proposed ap­
proach. The multiobjective optimization problem
involved two objective functions, two uncontrollable
design parameters, and three parameters of the physi­
cal shapes of the heat pipes in the satellite. The syn­
chronous 3D visualization helps designers to under­
stand the global tradoffs of each particular design
solution obtained from Pareto and quasi-Pareto solu­
tions. Clustering the optimum and quasi-optimum
solutions clearly guides the parameters ofthephysical
shapes, which are directly tied to the quality of the
design solution. With the help of the proposed 3D

Cluster #1. II

Cluster#2. 0

25800 26COO 25200 2641)0 26600 25800 27000 27200 274<lO.27800

Heal PipeMassig)

0.3

0.3

Fig. 10 presents the clustering result in both func­
tion and parameter spaces. Since heat resistance
decreases as fins become thicker, the solutions in
cluster #1 with thicker fins have higher thermal con­
ductance. However, in the case of cluster #2, whose
solutions have long fins, the heat flux becomes
smaller as the fin parts are located further from the
pipe junction. Therefore, long fins simply increases
the mass without improving conductance, which re­
sults in poor design. From this evaluation, heat pipe
designers can clearly understand which combination
of .design parameters improves or deteriorates the
quality of design by using the proposed visualization
and clustering technique.

Fig. 11 shows the projection of parameter space
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visualization and clustering technique, the design
engineer of a heat piping system in an artificial satel­
lite can easily obtain useful information for finalizing
the best design solution.
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